CEE 241 Water Quality

Fall Quarter 2014

Time and	Place:	Lectures, Mon./Wed./Fri.: 9:10 am - 10 am, HMNSS 1406
		Discussion, Fri.: 2:10 pm - 3 pm, INTS 2138
Instructor		Dr. Haizhou Liu
		Bourns Hall A239
		Department of Chemical and Environmental Engineering
		Phone: (951) 827-2076; email: haizhou@engr.ucr.edu
		Personal website: http://www.cee.ucr.edu/liu/
Office Ho	our:	Wed./Fri. 3:30 pm – 4:30 pm or by appointment
Textbook	: Water C	Chemistry, 2 nd edition, Benjamin (Waveland Press, 2014)
Reference	e: Water (Aquatic Water (Aqueou A Probi Princip	Chemistry, Brezonik and Arnold (Oxford, 2011) c Chemistry, Stumm and Morgan (Wiley, 1996) Chemistry, Snoeyink and Jenkins (Wiley, 1980) as Environmental Geochemistry, Langmuir (Prentice-Hall, 1997) lem-solving Approach to Aquatic Chemistry, Jensen (Wiley, 2003) les & Applications of Aquatic Chemistry, Morel & Hering (Wiley, 1993)
Others:	Suppler	nental reading materials will be posted on iLearn course website.

Course Description:

Fundamentals of chemical equilibria as applied in environmental engineering processes. Chemistry topics include acid-base equilibrium, the carbonate system, metal-ligand coordination, mineral surface interactions, redox reactions, and surface/colloid chemistry. Applied environmental systems include water quality and treatment, soil remediation, and outdoor air pollution.

Learning Objectives:

Students will learn: (1) fundamental principles of aquatic chemistry including acid/base, metal complexation, mineral solubility, and oxidation-reduction reactions; (2) solve chemical equilibria problems in the context of processes in natural and engineered waters; (3) learn applications of aquatic chemistry principles such as water treatment, nutrient cycling, and pollutant fate in air, water, and soil; (4) learn technical writing skills.

Grading: Homework (25%) Midterm Exam (25%) Final Exam (30%) Research Paper (20%)

Class schedule (subject to adjustment)

Session	Date	Topics	Reading
1	10/3	Introduction; Perspectives on chemical equilibrium;	Ch. 1
		Concentration scales	
2	10/3	Discussion: concentration and activity; activity	Ch.2
		coefficients	
3	10/8	Thermodynamic fundamentals	Ch.1,2
4,5	10/10	Thermodynamic interpretation of equilibrium	Ch.2
6	10/13	Chemical activity; activity coefficients in solution;	Ch.3
7	10/15	Acidity constants, acid strength	Ch.4
8,9	10/17	Graphical representation of acid/base equilibria,	
10	10/20	Mass and charge balances,	
		numerical solutions of acid/base problems	
11	10/22	Graphical solutions of acid/base problems,	Ch.5
		proton condition	
12,13	10/24	Numerical solutions of acid/base problem;	
14	10/27	Identifying dominant species; The TOTH equations	
15	10/29	Software for chemical equilibrium problems: MINEQL+	Ch. 6
16,17	10/31	MINEQL+: acids and bases; fixed activity species	
18	11/3	Titrations	
19	11/5	Alkalinity	Ch. 7
20	11/7	Buffers	
21	11/7	Midterm Exam	
22	11/10	Gas/liquid equilibrium	Ch. 8
23	11/12	Acidic and basic gases	
24,25	11/14	Metals in solution: coordination chemistry and speciation	
26	11/17	Predominance area diagrams; solution equilibrium with	
		metal hydroxides	
27	11/19	Solution equilibrium with metal carbonates and hydroxides	
28,29	11/21	Systems with potential precipitation of solids	
30	11/24	Systems with potential precipitation of solids	Ch. 9
31	11/26	Precipitation of solids in MINEQL+; predominance area	Ch. 10
		diagrams with solids	
32,33	11/29	Thanksgiving Holiday	
34	12/1	Oxidation-reduction reactions: Introduction, redox	
		speciation	
35	12/3	Redox reactions and energy	Ch. 11
36,37	12/5	Solid-liquid interface	Ch. 12
38	12/8	Applications	Notes
39,40	12/10	Applications	Notes
	TBD	Final Exam	